
Tuesday’s Exercises  
Please direct comments and questions to 

Scott Ferson (scott@ramas.com) 
Applied Biomathematics 

Interval probability 
 
1. Explore the Risk Calc scripts BLOOD, BIAS, SAFETY, LOGIC, TURNSIGNALS.  (Enter 

“run blood”.) 
 

Several of the scripts use confidence intervals about frequencies to represent the 
sampling uncertainty of the estimates.  These intervals are used in calculations based 
on interval analysis.  The guarantee about the results of such calculations is 
contingent on the additional assumption that these intervals are sure to contain the 
true frequencies.  

 
2. Calculate the probability of tank rupture under pumping that assumes the interval 

inputs and makes no assumption about the dependencies among the events. 
 

You can make the calculation in Risk Calc with the following commands. 
t = [4.5e-6, 5.5e-6] 
k2 = [2.5e-5, 3.5e-5] 
s = [0.5e-4, 1.5e-4] 
k1 = [2.5e-5, 3.5e-5] 
r = [0.5e-4, 1.5e-4] 
s1 = [2.5e-5, 3.5e-5] 
t | (k2 | (s & (s1 | (k1 | r)))) 
     [ 2.5e-05, 0.0001905]  

Thus, the answer is the interval 2.5�10�5 to 1.9�10�4, which encloses all the other 
intervals computed for the tank example, but is not vacuously wide. 
 
You can also compute the bounds yourself, without making use of Risk Calc’s & and 
| operators to get the probabilities of the conjunction and disjunctions.  The 
calculation is straightforward, although rather cumbersome.  Keep in mind that  

a & b=[max(0, a+b–1), min(a,b)], and 
a  |  b=[max(a,b), min(1, a+b)], 

where a = [a1, a2] and b = [b1, b2] are interval probabilities for the two events, and 
min(a,b) = min([a1,a2], [b1,b2]) = [min(a1,b1), min(a2,b2)] 
max(a,b) = max([a1,a2], [b1,b2]) = [max(a1,b1), max(a2,b2)], 
a+b = [a1,a2] + [b1,b2] = [a1+b1, a2+b2],  
a�1 = [a1,a2] � [1,1] = [a1�1, a2�1], and  

you can represent zero and one as the degenerate intervals [0,0] and [1,1]. 
 



3. Derive an algorithm to compute the probability that n of k events occur, given 
intervals for the probability of each event, assuming they’re independent.  Derive an 
analogous algorithm for the Fréchet case. 

 
This is a very difficult task.  It may be useful to obtain conservative bounds on the 
resulting probability that are not best possible but sure to enclose the actual 
probabilities.  There may also be some special cases in which the calculation becomes 
easier.  Any suggestions would be welcome. 

 

Robust Bayes 
 
1. Review the Risk Calc scripts TESTPOSITIVE and BAYES. 
 

The TESTPOSITIVE script emphasizes the adverse consequences of repeated 
parameters in an expression involving uncertainty.  It is fortunate that Bayes’ rule is 
easy to simplify to remove repeated parameters.  Entering the command robust as a 
part of the BAYES script shows an illustration of the uniform distributions in the class 
of posteriors computed in exercise #3 below. 

 
2. Sketch [P,�P] for {-,B,G,B,B,G,R,G,…,(35/100)R,…(341/1000)R}. 
 

The sequence of samples from Walley’s bag of marbles is blue, green, blue, blue, 
green, red, green, …, 35 red out of 100 draws, …, 341 red out of 1000 draws.  To 
compute interval bounds on the predictive probabilities for the event “the next marble 
drawn will be red” before each draw, we use the formula  
 

p = [nj / (N + s), (nj + s)/(N + s)] 
 
where nj is the running total number of red marbles that have been drawn so far, N is 
the total number of marbles (of any color) that have been drawn, and s is a positive 
constant.  If, as Walley recommends, we let s = 2, we would get  
 

N  nj  p 
0 0 [ 0, 1] 
1 0 [ 0, 0.66667] 
2 0 [ 0, 0.5] 
3 0 [ 0, 0.4] 
4 0 [ 0, 0.33334] 
5 0 [ 0, 0.28572] 
6 1 [ 0.125, 0.375]  
7 1 [ 0.11111, 0.33334]  . . . . . . . . . 
100 35 [ 0.34313, 0.36275]  . . . . . . . . . 
1000 341 [ 0.34031, 0.34232]  



 
for the observed sequence of marble draws.  If, however, we let s = 1, we’d get 
 

N  nj  p 
0  0  [ 0, 1] 
1  0 [ 0, 0.5] 
2  0 [ 0, 0.33334] 
3  0 [ 0, 0.25] 
4  0  [ 0, 0.2] 
5  0 [ 0, 0.16667] 
6 1 [ 0.14285, 0.28572] 
7 1 [ 0.125, 0.25] . . . . . . . . . 
100 35 [ 0.34653, 0.35644] . . . . . . . . . 
1000 341 [0.34065, 0.34166]  

 
Both sequences are graphed below.  Notice that the convergence in the left graph is 
slower than in the right graph. 
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3. What can be said about the posterior if the prior is uniform(a,b) and the likelihood 

function is an a non-zero constant for values of � between c and d and zero 
elsewhere?  Sketch the answer for a = 2, b = 14, c = 5, d = 21.  What is the posterior 
if a � [1,3], b � [11,17], c � [4,6], d � [20,22]? 

 
The posterior distribution would be uniform(max(a,c), min(b,d)), that is, a uniform 
ranging from the greater of a and c to the lesser of b and d.  In the first case, the 
posterior would be a uniform (flat density, straight line cumulative) between 5 and 
14.  The graphs below illustrate this case, in a density plot on the left and a 
cumulative probability plot on the right.  In both, the posterior is shown in gray. 
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In the second case, the posterior would be the class of uniforms whose minima are 
within the interval [4,6] and whose maxima are within the interval [11,17].  The class 
of priors includes all distribution functions that are straight lines inside the blue 
region depicted in the graph below.  The class of likelihood functions (normalized 
and cumulated for display on the same scale) consists of those functions 
corresponding to any straight line inside the red region in the graph, that is, any 
straight line that intersects theta axis between 4 and 6 and the top edge between 20 
and 22.  Any straight line that can be drawn inside the gray region in the graph 
representing a uniform distribution is a possible posterior from this analysis.   
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Notice that the formula uniform(max(a,c), min(b,d)) works even when a, b, c and d 
are intervals.  You can make the calculations and get the (cumulative) graphs in Risk 
Calc by entering the following commands. 

 
a = 2 
b = 14 
c = 5 
d = 21 
prior = uniform(a, b) 
likelihood = uniform(c, d) 
posterior = uniform(max(a,c), min(b,d)) 
posterior 
     ~uniform(range=[5,14],  mean=9.5,  var=6.75)  
 
a = [1,3] 
b = [11,17] 
c = [4,6] 
d = [20,22] 



prior = uniform(a, b) 
likelihood = uniform(c, d) 
posterior = uniform(max(a,c), min(b,d)) 
posterior 
     ~uniform(range=[4,17],  mean=[7.5,11.5],  var=[4,10.1])  

 
4. How should the interval bounds on a posterior arising from interval bounds on the 

prior density distribution and interval bounds on the likelihood function be 
normalized? 

 
Suppose the bounds on the prior distribution are depicted in blue on the graph below 
and that the bounds on the likelihood function are depicted in red on the same graph.  
(You should check that the area below the lower blue bound is strictly less than unity 
and the area below the upper blue bound is strictly greater than unity, and, in this 
case, the area under the lower bound is 0.8 and under the upper bound is 2.5.) 
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The first step toward computing the implied bounds on the posterior is to multiply the 
bounds on the prior with the bounds on the likelihood for every value of theta.  For 
instance, at the value theta=16, the prior bounds [0.08, 0.16] and the likelihood 
bounds [0.35, 0.44] yield the product [0.028, 0.07] by interval multiplication.  The 
bounds resulting from this process are depicted in gray in the graph below. 
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Any function that lies between these gray bounds is an un-normalized posterior 
distribution.  The normalization that will make the function into a posterior is 
independent of that needed for other functions within the bounds that become 
posteriors.  What are the bounds on all normalized posteriors?  The upper bound is 
just the upper gray bound divided by the area under the lower gray bound.  The lower 
bound is the lower gray bound divided by the area under the upper gray bound.  The 
resulting bounds on the normalized priors are depicted in black in the graph below.  
These black bounds contain all posteriors that could result from this analysis, and 
they are the best possible bounds that do so, although it is not the case that any 
function lying within the bounds that has unit area will necessarily be one of the 
posteriors.  To see why the black bounds in the graph below are the best possible 
bounds on the density of posterior distributions, consider extreme cases of un-
normalized posteriors selected from within the gray bounds in the graph above.  In 
particular, consider the function that traces the lower gray bound at every value of 
theta except the value 15, at which the function jumps discontinuously to the upper 
gray bound.  Clearly, this function is a possible un-normalized posterior, given the 
bounds on the prior and the likelihood.  How will it be normalized?  Because its area 
is obviously just the same as the area of the lower gray bound, we divide by that area 
to obtain the normalized posterior.  The value of this normalized posterior at the value 
of theta=15 is obviously the largest possible value of any posterior because it 
corresponds to the largest numerator and the smallest denominator possible in any 
normalization.  Similar upper bounds on the normalized posterior can be obtained for 
any other value of theta in the same way.  If the area beneath the lower gray bound is 
zero, then the densities of the posterior are unbounded above.  A reciprocal argument 
explains why the lower bound on the posteriors is computed as the lower gray bound 
divided by the area of the upper gray bound. 
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Dempster-Shafer theory 
 
1. Explore the script DIKE.  Create Dempster-Shafer structures like “mixture( 0.2, [1,3], 

0.5, [2,5], 0.3, [4,8])”. Compute with them in the Listener window. 
 

The mixture function in Risk Calc does not require that the masses you specify for the 
focal elements add up to unity.  If they don’t, it will scale them so that they do.  So, 
for example, the function “mixture(2, [1,3], 5, [2,5], 3, [4,8])” produces the same 
Dempster-Shafer structure as “mixture( 0.2, [1,3], 0.5, [2,5], 0.3, [4,8])”. 
 
The script DIKE actually makes use of probability distributions rather than Dempster-
Shafer structures for the significant wave height and offshore peak wave steepness.  
To replace those definitions so that the script matches the example given in the slides, 
enter the assignments  
 

Hs = mixture(1, [1,1.5],  2, [1.1,1.5],  2, [1.3,1.6],  2, [1.3,1.4],  1, [1.5,1.7]) * units('m')  
s_0p = mixture(1,[0.03,0.036],  9,[0.034,0.042],  9,[0.039, 0.04],  1,[0.045, 0.048]) 

 
All you need to do is enter the above two lines, and then cursor up to the line defining 
Z, and press carriage return 9 times to execute the subsequent lines. 

 
2. Compute the DS structure for B–A, and sketch the cumulative belief and plausibility 

functions.  Concoct a numerical example of a logical operation such as AND or OR 
with DS structures. 

 
Yager’s Cartesian product for the subtraction is below.  Notice that the interval 
subtractions are anti-elementwise, so, for example, [2,8] � [1,3] is [�1,7], and not 
[1,5]. 

 



B � A 
independence 

A�[1,3] 
p1 = 1/3 

A�[2,4] 
p2 = 1/3 

A�[3,5] 
p3 = 1/3 

B�[2,8] 
q1 = 1/3 

B�A�[�1,7] 
prob=1/9 

B�A�[�2,6] 
prob=1/9 

B�A�[�3,5] 
prob=1/9 

B�[6,10] 
q2 = 1/3 

B�A�[3,9] 
prob=1/9 

B�A�[2,8] 
prob=1/9 

B�A�[1,7] 
prob=1/9 

B�[8,12] 
q3 = 1/3 

B�A�[5,11] 
prob=1/9 

B�A�[4,10] 
prob=1/9 

B�A�[3,9] 
prob=1/9 

 
Stacking up the intervals from this Cartesian product yields the CPF and CBF 
depicted in the graph below. 
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A numerical example involving logical operations on Dempster-Shafer structures 
requires that the operands be logical quantities.  This means they must be 
dimensionless and range only between zero and one.  This would be satisfied by the 
Dempster-Shafer structures 

 
C = {([0.1, 0.3], 1/3),  ([0.2, 0.4], 1/3),  ([0.3, 0.5], 1/3)} and 

 D = {([0.1, 0.4], 1/3),  ([0.3, 0.5], 1/3),  ([0.4, 0.6], 1/3)}, 
 
which are the previous structures A and B scaled by division by 10 and 20 
respectively.  The Cartesian product for conjunction (&) with these operands is 
displayed below.  Note that conjunction under independence corresponds to interval 
multiplication, so the table is easy to complete. 

 

C & D 
independence 

C�[0.1, 0. 3] 
p1 = 1/3 

C�[0.2, 0.4] 
p2 = 1/3 

C�[0.3, 0.5] 
p3 = 1/3 

D�[0.1, 0.4] 
q1 = 1/3 

C&D�[0.01,0.12] 
prob=1/9 

C&D�[0.02,0.16] 
prob=1/9 

C&D�[0.03,0.2] 
prob=1/9 

D�[0.3, 0.5] 
q2 = 1/3 

C&D�[0.03,0.15] 
prob=1/9 

C&D�[0.06,0.2] 
prob=1/9 

C&D�[0.09,0.25] 
prob=1/9 

D�[0.4, 0.6] 
q3 = 1/3 

C&D�[0.04,0.18] 
prob=1/9 

C&D�[0.08,0.24] 
prob=1/9 

C&D �[0.12,0.3] 
prob=1/9 

 
Stacking up the intervals from this Cartesian product yields the CPF and CBF 
depicted in the graph below. 
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Had we chosen an example involving disjunction, the calculation would have 
required computing C|D = [c1,c2] | [d1,d2] = 1 � (1 � [c1,c2])(1 � [d1,d2]) for each 
matrix element. 
 
The operations could have been done in Risk Calc with the following commands. 
 

A = mixture(1/3, [1,3],   1/3, [2,4],   1/3, [3,5]) 
B = mixture(1/3, [2,8],   1/3, [6,10],   1/3, [8,12]) 
B |-| A 
    ~(range=[-3,11],  mean=[1.3,8],  var=[0,22])  
C = A / 10 
D = B / 20 
C |&| D 
    ~(range=[0.01,0.3],  mean=[0.053,0.2],  var=[0,0.0131]) 

 
where the vertical bars around the minus sign and the ampersand indicate that the 
operation is to assume independence.  The symbol for disjunction under 
independence is ||| (a vertical bar enclosed in vertical bars).  The CPF and CBF would 
be graphed automatically. 

 
3. How would you compute the Yager convolution assuming perfect dependence if the 

operands had unequal numbers of focal elements?  What if the focal elements are not 
nicely ordered? 

 
The calculation assuming perfect dependence presumes the Cartesian product creates 
a square matrix whose diagonal absorbs all the mass.   If the Dempster-Shafer 
structure for A has three focal elements and that for B had only two, the matrix 
wouldn’t be square.  It can be made square by repartitioning the mass into the least 
common multiple of focal elements.  For example, if 
 

A = {([1,3], 1/3),  ([2,4], 1/3),  ([3,5], 1/3)} and 
 B = {([2,8], 1/2),  ([6,10], 1/2)}, 
 
then the equivalent structures  
 

A = {([1,3],1/6),([1,3],1/6), ([2,4],1/6),([2,4],1/6), ([3,5],1/6),([3,5],1/6)} 



 B = {([2,8],1/6), ([2,8],1/6),([2,8],1/6), ([6,10],1/6),([6,10],1/6),([6,10],1/6)}. 
 
would allow the matrix to be square.  The structures are equivalent to the ones above 
because they make precisely the same claims about where along the real line the mass 
resides.  If one Dempster-Shafer structure had two focal elements and the other had 
four, then only the first would need to be repartitioned. 
 
The calculation assuming perfect dependence also assumes that the focal elements of 
the Dempster-Shafer structures can be ordered from smallest to largest.  The elements 
of each Dempster-Shafer structure can be reordered to facilitate this so long as some 
least-to-greatest ordering of the elements by their left bounds corresponds to a least-
to-greatest ordering of the elements by their right bounds.  This will not be possible, 
however, if some of the focal elements within a Dempster-Shafer structure are nested.  
If this is the case, then applying this algorithm for computing the convolution under 
perfect dependence would require that the Dempster-Shafer structure first be 
transformed into a related Dempster-Shafer structure that can be ordered.  For 
instance, the Dempster-Shafer structure {([2,10], 1/2),  ([6,8], 1/2)} would be 
transformed to {([2,8], 1/2),  ([6,10], 1/2)}.  These structures have the same CPF and 
CBF, but they are obviously not the same Dempster-Shafer structures.  Numerical 
experiments suggest that this is a reasonable strategy, but it is an open question 
whether such transformations are legitimate, and, if not, how convolutions assuming 
perfect dependence for such cases could be computed.  Your thoughts on this issue 
would be welcome. 

 

Probability bounds analysis 
 
1. Explore the scripts ADDP, DEPEND, CONVOLVE, BOXES, MOMENTS, and CORRS. 
 

The ADDP and DEPEND scripts show how an interval and a probability distribution 
can be added together and how the convolution of distributions is influenced by the 
assumption that is made about their dependence.  Note that an interval is entirely 
different from a uniform distribution and the two behave completely differently in 
calculations.  Consider, for example, the following convolutions under independence, 
in which the expression U(a,b) denotes a uniform probability distribution over the 
range of values between a and b, and the expression [a, b] denotes an interval over 
the range of values between a and b.  Note that, although the range is always [3,6], 
the moments vary noticeably as do the shapes of the p-boxes. 
 



U(1,2) |+| U(2,4) 
    ~trapezoidal(range=[3,6],  mean=4.5,  var=0.416667) 
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�
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�

	

 
 
[1,2] |+| U(2,4) 
    ~(range=[3,6],  mean=[4,5],  var=[0.333,0.584]) 
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���

�

	

 
 
U(1,2) |+| [2,4] 
    ~(range=[3,6],  mean=[3.5,5.5],  var=[0.08,1.09]) 
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�

	

 
 
[1,2] |+| [2,4] 
    [ 3, 6] 
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���

�

	

 
 
Similar calculations can be made with without any assumption about dependence 
between the operands (the Fréchet case). 
 
U(1,2) + U(2,4) 
    ~(range=[3,6],  mean=4.5,  var=[0.08,0.75])  
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[1,2] + U(2,4) 
    ~(range=[3,6],  mean=[4,5],  var=[0.03,1.11])  
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U(1,2) + [2,4] 
    ~(range=[3,6],  mean=[3.5,5.5],  var=[0,1.6])  
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[1,2] + [2,4] 
    [ 3, 6] 
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���

�

	

 
 
2. Type in the inputs and model for the mercury and PCB examples into Risk Calc.  Do 

you get the same answers?  Did you enter the units too?  
 

The Risk Calc commands you would enter and the graphs they would produce are 
shown below. 
 
// PCBs in ducks eaten by hunters 
EF = minmaxmeanstddev(1, 52, 5.4, 10) * units('meal per year') 
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IR = minmaxmeanstddev (1.5, 675, 188, 113) * units('gram per meal')   
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C = [7.1, 9.73] mg per kg   
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�
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LOSS = 0   
AT = 365.25 days per year    
BWmale = lognormal(171 pounds,  30 pounds)    
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BWfemale = lognormal(145 pounds,  30 pounds) 
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BW = mixture(BWfemale, BWmale)   
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RfD = 0.00002 mg per kg per day 
 
 
HQ = (EF  |*|   IR  |*|  C  |*|  (1  |-|  LOSS))  |/|  (AT  |*|  BW  |*|  RfD)  +  0     //adding 0 cancels units 
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mean(HQ)  //Mean hazard quotient  
    [ 14, 21] 
sd(HQ)  //Standard deviation 
    [ 32, 47] 
median(HQ)  //Median (50th percentile) 
    [ 1, 36] 
cut(HQ,95%)  //95th upper percentile  
    [ 5.6, 2.3e+02] 
mean(HQ) //Range of possible values  
    [ 14, 21] 
 
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
 
//mercury in wild mink 
FMR = lognormal ([90,120] Kcal per kg per day, [22,30] Kcal per kg per day)    
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BW = normal( 608 gram, 66.9 gram)    
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AEfish = minmaxmean(0.77, 0.98, 0.91)    
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AEinverts = minmaxmean(0.72, 0.96, 0.87)     
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GEfish = normal(1200 Kcal per kg, 240 Kcal per kg)    

� ���� ����
�

���

�
�*#$%�&�	�������


�
�

 
GEinverts = normal(1050 Kcal per kg, 225 Kcal per kg)    
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Cfish = [0.1,0.3] mg per kg    
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Cinverts = [0.02, 0.06] mg per kg    
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Pfish = 0.90    
Pinverts = 0.10    
TDI = FMR |*| ((Cfish |*| Pfish) |/| (AEfish |*| GEfish) |+| (Cinverts |*| Pinverts) |/| (AEinverts |*| GEinverts)) 
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mean(TDI)  // Total Daily Intake (units of mg of mercury per kilogram of mink tissue per day) 
    [ 0.0074365, 0.034531] kg-1 day-1 mg 
median(TDI) 
    [ 0.006601, 0.034378] kg-1 day-1 mg 
cut(TDI, 95%)  // 95th percentile 
    [ 0.011073, 0.061117] kg-1 day-1 mg 
sd(TDI) 
    [ 0.0021782, 0.018363] kg-1 day-1 mg 
 

3. The “sample rule” says that n independent samples of a random variable divide the 
real line into n + 1 segments of equal probability.  Is this reasonable? What would the 
p-box look like?   

 
Suppose that the values 57, 15, 76, 37, 55, 11, and 23 were observed in seven random 
samples of some random variable.  The assertion that there is equal probability within 
each of the resulting eight segments of the real line could be represented by the 
probability distribution shown in the graph below.  This distribution assumes 
equiprobability within as well as among the segments of the real line.  The tails, in 
principle, go out to infinity in both directions.  This is the maximum entropy 
distribution corresponding to this sample of seven data points.  
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A p-box that represents a somewhat weaker statement is shown in the graph below.  
This p-box makes no claim about where within each of the segments the probability 
(1/8) lies. 
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A p-box that makes a still weaker statement is shown below.  This p-box represents 
the upper and lower 95% Kolmogrov-Smirnov confidence bounds on the distribution 
from which the seven data values were sampled.  The breadth of these bounds 
acknowledges the small sample size of the data on which they are based.  As the 
number of samples increases, the bounds tend to become closer together.  The 
calculation of the Kolmogorov-Smirnov confidence bounds assumes that the data are 
random (that is, independent and identically distributed).  The result is distribution-
free except that it assumes continuity.  Like other bounds based on confidence 
procedures, these bounds are not rigorous.  Nevertheless, they do seem considerably 
more reasonable than either of the previous representations of the data in view of the 
smallness of the sample size. 
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The Risk Calc commands below can be used to construct the three objects depicted in 
the graphs above.   

 
a=[0,100]   // this should be the range of the random variable or perhaps [-infinity, infinity] 
mixture(1,U(left(a),11),1,U(11,15),1,U(15,23),1,U(23,37),1,U(37,55),1,U(55,57),1,U(57,76),1,U(76,right(a))) 
    ~(range=[0,100],  mean=40.5006,  var=736.829)  
mixture(1,[left(a),11], 1,[11,15], 1,[15,23], 1,[23,37], 1,[37,55], 1,[55,57], 1,[57,76], 1,[76,right(a)]) 
    ~(range=[0,100],  mean=[34.2,46.8],  var=[434,1122])  
histogram(a,a,11,15,23,37,55,57,76) 
    ~(range=[0,100],  mean=[10,79],  var=[0,2470])  

 
The U’s denote uniform distributions.  The right and left functions return the upper 
and lower endpoints of an interval.  The first object is simply a stochastic mixture of 
uniform distributions.  The second object is likewise a mixture of intervals.  Note that 
the variable a is ascribed the range [0,100], which might be perfectly appropriate if 
the values are percentages.  The choice of the range will strongly affect the estimates 
of the mean and variance. 

 



4. Consider the “box-interval” conjecture (see BOXINT). 
 

The calculations in the script suggest that p-boxes are not merely bounds on 
probability distribution functions.  A p-box carries a little bit more information than 
just these bounds.  It also carries (interval bounds on) the mean and variance of the 
unknown distribution.  This additional information can be used to improve the 
specificity of the results of calculations.  For instance, moment projection formulas 
tell us that the means of sums, products and differences of independent random 
numbers are the sums, products and differences of the means.  If the quantities are not 
independent, it is still possible to bound the moments of the functions.  Distribution 
shape is also carried along with a p-box, such as when it is known to be normal, 
lognormal, Weibull, etc.  Information about the shape of the distribution sometimes 
allows calculations to be improved.  For example, additive convolutions of normal 
distributions under independence always yield normal distributions; multiplicative 
convolutions of lognormals yield lognormals; etc.  There are a variety of theorems 
from mathematical statistics that can be employed to improve the results of 
calculations involving p-boxes.  Finally, a p-box also carries its units, which is 
actually a very important piece of information that is commonly overlooked.  
Knowing the units allows the software to detect a large class of error conditions, such 
as adding quantities with incompatible units (“apples and oranges”) or raising a 
quantity to the “2 inch” power.   
 
This strategy of compiling ad hoc propagation methods together may continue to be 
useful until convenient software to handle calculations involving credal sets or other 
representations of imprecise probabilities becomes available.  In principle, arbitrary 
additional information could be carried along with a p-box and propagated through 
calculations so long as propagation formulas are known.  This approach does not in 
general yield best possible results, of course, but may give results that are good 
enough for practical problems.  What additional information could be carried along 
with a p-box that could be used to improve the calculations?  For instance, would it 
be possible and useful to carry along with a p-box the fact that the distribution it 
represents is integer-valued?  Would it be possible to keep track of impossible values 
or distributions or even p-boxes of disallowed distributions inside of a p-box?  How 
could knowing such information be used to obtain improved numerical results?  
Suggestions are most welcome. 

 

Imprecise probability 
 
1. Of the p-boxes shown in BOXES, which have the property that every distribution they 

contain is a member of the specified class? 
 

Running the BOXES script and selecting Windows/Tile from the main menu produces 
the display below.  Only the boxes in the graphs labeled ‘normal’, ‘minmaxmedian’, 
and ‘minmax’ have the property that every distribution within the box has the 
specified property (of being normal, having the specified minimum, maximum and 



median, and having the specified minimum and maximum, respectively).  For 
example, every distribution inside the p-box in the bottom, right-hand graph has the 
specified minimum and maximum.  See the script BOXES.UC itself for details about 
how the p-boxes are specified.  Note that the p-box in the ‘normal’ graph has the 
property only because the parameters are precise that the p-box is degenerate so that it 
contains a single distribution. 
 

 
 
2. Would be the expectations of TDI and HQ in the mercury and PCB examples be 

tighter if computed with imprecise probabilities than the interval means from the 
probability bounds analysis? Would the estimates improve if the assumption of 
random-set independence were replaced by an assumption of strong independence?  

 
The interval expectations for TDI and HQ might be tighter than those we obtained in 
exercise #2 in the section on probability bounds analysis.  The intervals might also 
get tighter still if we assumed strong independence.  However, computing the actual 
intervals would require mathematical programming, and there is currently no 
convenient software to make these calculations.  Knowing how much improvement 
there could be in these practical cases would be very interesting and important.  
Suggestions, and especially sample calculations, would be extremely welcome. 

 


