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Outline

Basics of Imprecise Probability and Notation (10 min.)

Independence Concepts (30 min.)

Testing Independence, Building Classification Trees (30
min.)

Bayesian Networks. Learning (30 min.)

Bayesian Networks. Inference (20 min.)
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Gambles

Variables X ,Y,Z,W, . . . taking values on finite sets
UX ,UY ,UZ,UW , . . .

In lowercase x we will represent a generic value of
variable X : x ∈UX .

Sets of Variables will be represented in bold X taking
values on finite sets UX = ∏Y∈XUY .

A generic value of X will be represented as x.

A gamble about X is a real function, f , defined on UX .

L(X) is the set of all possible gambles about X .
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Sets of Desirable Gambles

Sets of desirable gambles D(X) should verify the following
inference rules (Walley, 1991):

D1. If f ≥ 0, then f ∈ D(X)

D2. If f ∈ D(X) and λ ≥ 0, then λ. f ∈ D(X)

D3. If f ,g ∈ D(X), then f +g ∈ D(X)

Sets verifying these properties will be called closed.

If they also verify that −1 6∈ D(X) they will be called coherent.
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Coherent Sets and Credal Sets

A Credal Set about X is a set of probability measures,
M (X), about X .

Two credal sets are equivalent if they have the same
convex hull.

A credal set and a set of desirable gambles are
compatible if and only if

∀ f , inf {EP[ f ] : P ∈ M (X)} = sup {µ : f −µ ∈ D(X)} = P( f )

where EP[ f ] is the mathematical expectation with respect
to P.

P( f ) is called the lower prevision of f .
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Coherent Sets and Credal Sets
A set of desirable gambles define an unique credal convex
set.

M (X) = {P : EP[ f ] ≥ 0,∀ f ∈ D(X)}

D1(X) is said to be less informative than D2(X) if and only
if D1(X) ⊆ D2(X).

We can have different coherent sets of gambles
associated to the same convex set M (X). The least
informative one is:

D(X) = { f : P( f ) > 0 or f ≥ 0}

Other possible sets,

D ′(X) = { f : P( f ) ≥ 0}
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Operations in Sets of Gambles

If R (X) is a set of gambles, then the set of gambles
generated by application of properties D1, D2, and D3
(the intersection of all the sets verifying these properties
and containing R (X)) will be called the natural extension
of R (X) and denoted by R (X).

If B ⊆UX , then the lower (upper) probability of B,
P(B)(P(B)), is the lower (upper) prevision of the indicator
function IB of B.

The marginalization of a closed set of gambles about
(X ,Y ) to X : D(X ,Y )↓X = D(X ,Y )∩L(X), where f ≡ f ′ if
f ′(x,y) = f (x).
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Operations in Sets of Desirable Gambles

The weak extension of D(X) to (X ,Y ): D(X)↑X ,Y , it is the
natural extension on (X ,Y ) of D(X).

The Combination:
D(X ,Y )⊕D(Y,Z) = (D(X ,Y )↑X ,Y,Z ∪D(Y,Z)↑X ,Y,Z).

The set of desirable conditional gambles given B is
D(X |B) = { f ∈ L(X) : f .IB ∈ D(X)}, where IB is the
indicator function of B.
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Conditioning (Walley)

UX = {x1,x2,x3,x4} and a credal set with two extreme probability
distributions: p1 = (0,0,0.25,0.75), p2 = (0,0,0.5,0.5).
Two sets of desirable gambles: Di(X) = Ri(X), i = 1,2, with

R1(X) = { f : f (x3)+3 f (x4) > 0, f (x3)+ f (x4) > 0}

R2(X) = R1(X)∪{ f : f (x3) = f (x4) = 0, f (x1)+ f (x2) > 0}

R1(X) implies p(x1) = p(x2) = 0.
D1(X |{x1,x2}) is the vacuous set of gambles.
D2(X |{x1,x2}) is the set of desirable gambles generated by
{ f : f (x1)+ f (x2) > 0} Associated to a single probability
distribution: p(x1) = p(x2) = 0.5, p(x3) = p(x4) = 0.0.
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Operations in Credal Sets

The marginalization of a credal set on (X ,Y ) to X :
M (X ,Y )↓X = {P↓X : P ∈ M (X ,Y )}, where P↓X is the
marginal distribution to X of P.

The weak extension of M (X) to (X ,Y ): M (X)↑X ,Y , it is
{P : P↓X ∈ M (X)}.

The Combination:
M (X ,Y )⊕M (Y,Z) = M (X ,Y )↑X ,Y,Z ∩M (Y,Z)↑X ,Y,Z.

Graphical Models with Imprecise Probability – p.10



Conditioning

Given credal set M (X) we can consider two different
definitions of conditioning:

Natural extension conditioning.- It is vacuous if P(B) = 0
and otherwise defined as

{P(.|B) : P ∈ M (X)}

More appropriate for epistemic probabilities.

Regular extension conditioning.- It is vacuous if P(B) = 0
and otherwise defined as

{P(.|B) : P ∈ M (X), P(B) 6= 0}

More appropriate for objective probabilities.
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