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1. Some preliminaries

Classical probability and statistics

Def. Given a sample-space Ω and a σ-field

A of random events in Ω, a set function p(·)
defined on A is called a classical probability,

if it satisfies the following three axioms:

I. p(A) ≥ 0, ∀A ∈ A. (1)

II. p(Ω) = 1. (2)

III. ∀Ai, Aj ∈ A with Ai ∩Aj = ∅, if i 6= j :

p(
∞⋃

i=1

Ai) =
∞∑

i=1

p(Ai). (3)

2



• Kolmogorov’s axioms; σ additivity

• (Ω,A, p) probability space (mathematical

model of a probability experiment)

• Specification of probability

* Ω is countable: Specify probability mass

function p({ω}), then

p(A) =
∑

ω∈A

p({ω}), ∀A ∈ P(Ω)

* Else, for instance, when Ω = R, spec-

ify a density function f : Ω → R+ with∫
Ω

f(ω)dω = 1, then

p(A) =
∫

A

f(ω)dω, ∀A ∈ A ( P(Ω)



• Most often: parametric models, basic form
of the density fϑ(·) is known up to a pa-
rameter ϑ of finite dimension, for instance:
normal distribution with mean value µ and
variance σ2.

• basic model of statistical inference

* Given a set of probability spaces which
are potentially true ⇒ (Ω,A, (pϑ)ϑ∈Θ)

* One of these is true, i.e. it generates
the observations.

* Find the true model on the basis of a
sample consisting of values ω(1), . . . , ω(n)

where ω(i) is the outcome of the i-th
repetition of the probability experiment
(Ω,A, (pϑ)ϑ∈Θ)
(Survey; n persons drawn randomly, ω(i)

value of the i-th person)

* estimation, testing, decision making



1.2 Interval Probability

R-probability, F-probability, structure

The Need of a New Calculus of Probability:

Probability and uncertainty as two dimen-

sional phenomenon

uncertainty

=

ideal + ambiguity
randomness

Peirce (1878, p.421): “...[T]o express the proper

state of our belief, not one number but two are

requisite, the first depending on the inferred

probability, the second on the amount of know-

ledge on which that probability is based”



Two main approaches

• sets of classical probabilities

• interval

[L(A);U(A)]

consisting of non-additive set functions L(·)
and U(·) .

The width reflects the degree of ambiguity

* P (A) = [a; a]: classical probability, situ-

ation of ideal randomness

... increasing ambiguity

* P (A) = [0; 1]: complete ignorance



Axiomatization of interval probability
Weichselberger (2000, IntJApproxReas; 2001,
Physika):

Look at the relation between the non-additive
set functions L(·) and U(·) and the structure
M, i.e the set of all compatible, classical prob-
abilities
M := {p(·) | L(A) ≤ p(A) ≤ U(A), ∀A ∈ A} ,

⇓
several levels of quality

1. M is empty: Contradictory assignment in
the probabilistic sense.

2. M is not empty: Interval probability in the
narrow sense

↙ ↘

[L(·), U(·)] →M [L(·), U(·)] ↔M
R-probabilty F-probability

not contradictory, not contradictory,
but possibly homogeneous

inhomogeneous F = (Ω,A, L(·))



Basic Definitions

• generalization of Kolmogorov’s axioms

• K (Ω,A) : the set of all classical probabilities
on a measurable space (Ω,A)

• P (·) is R-probability with structure M, if

1. P (·) is of the form

P (·):A →Z0 := {[L, U ] |0 ≤ L ≤ U ≤ 1}
A 7→ P (A) = [L(A), U(A)] .

2. The set

M :={p(·) ∈ K(Ω,A) |
L(A) ≤ p(A) ≤ U(A), ∀A ∈ A}

is not empty.

• P (·) is F-probability with structure M, if
P (·) is R-probability with structure M and

inf
p(·)∈M

p(A) = L(A)

sup
p(·)∈M

p(A) = U(A)





∀A ∈ A .



• R-probability:

* Not-contradictory from the probabilistic
point of view, but (eventually) not fully
homogeneous

* Strongly related to avoiding sure loss
in Walley’s theory (Walley (1991)) (but
σ-additivity of classical probabilities re-
quired)

• F-probability:

* fully homogeneous assignment, one-to-
one correspondence between interval-limits
and the structure

* L(A) = 1− U(AC), ∀A ∈ A.

* F = (Ω,A, L(·)): F-probability field.

* Corresponds to lower probability in the
sense of Huber & Strassen
Strong relation to lower envelopes (Fine
and students) (e.g. Papamarcou, A. &
Fine, T.L. (1991)) and to coherence
(Walley (1991) )



• more general: Walley (1991, Chapm. &
Hall): imprecise previsions obtained from
interval-valued expectations = linear par-
tial information (Kofler & Menges (1976,
SpringerLN Econ); Huschens (1985, R.G. Fis-
cher); Kofler (1989, Campus))

• The concept ‘structure’ establishes a strong
relation between interval-probability and sets
of classical probability measures. It serves
as a guiding principle for generalizing clas-
sical probability theory to interval probabil-
ity:

* expectation

* independent product of F-prob. fields

* conditional probability

* law of large number

– . . .

“inside the structure”: strict uncertainty!



1.2.2 Two-monotone Probability

• Special Cases: Capacities of Higher Order

* Belief-functions (totally monotone prob-

abilities), corresponding to a basic prob-

ability assignment (Shafer (1976, Prince-

ton UP), Yager, Fedrizzi und Kacprzyk

(1994, Wiley))

* Neighborhood models in robust statis-

tics (pseudo capacities, Choquet-capa-

cities)(Huber (1981, Wiley), for a sur-

vey (and extensions): Augustin (2002a,

JStatPlanInf.))

* Probability intervals (PRI) (Weichselberger

& Pöhlmann (1990; Springer LN AI)),

Campos, Huete and Moral (1994, IJUnc-

FuzzKbS )



* Other common names ’supermodular’
(Denneberg (1994; Kluwer)) or ‘convex’
(Jaffray (1989, OR Letters))

Two-monotone probability (field): Special
case of F-probability (field), where L(·) is two-
monotone ((strong) superadditive, supermod-
ular, convex) i.e.,

L(A∪B)+L(A∩B) ≥ L(A)+L(B), ∀A, B ∈ A .

classical probability field
⇓ 6⇑

totally monotone two-monotone probability
field

⇓ 6⇑
two-monotone probability field

⇓ 6⇑
F-probability field

⇓ ↑
Derived F-pr./F-Hull

R-probability field
⇓ ↑

lower previsions avoiding sure loss



Some Aspects of the Insufficiency of Two-

monotone Probabilities

• General neighbourhood-models

• Why should the distortion of a classical

probability always be convex?

• Problems of interpretation

There is neither a subjectivist’s nor a fre-

quentist’s operational definition or inter-

pretation for two-monotone probabilities.

• No closeness by working with partial deter-

minated probability

• The integrative character of interval prob-

ability would be lost

There is – at least up to now – no proper

way to come from an arbitary set of classical

probabilities to a corresponding two-monotone

probability.



• Parametric models

Usually, parametrically constructed F-prob-

ability fields (e.g. the F-normaldistributions)

are not two monotone probabilities.

Conclusion: The restriction of the calculus to

two-monotone probability would lead to a se-

rious reduction of the expressive power of the

concept of interval probability.

There isn’t “[...] any ‘rationality’ argument

for 2-monotonicity, beyond its computational

convenience” (P. Walley, 1981)



1.2.3 Interval-valued Expectation and/
or Choquet-Integral

X random variable: (measurable) mapping from

Ω to R

Classical expectation

• For discrete spaces

IEX =
∑
x

x · P (X(ω) = x)

If X takes only values in N, then

IEX =
∑

x∈IN

P (X(ω) ≥ x)

• In the continuous case with density f :

X(·) ≥ 0:

IEX =
∫

x · f(x)dx =
∫

p({ω | X(ω) > t}) dt



IEX =
∫

x · f(x)dx =
∫

p({ω | X(ω) > t}) dt

Two possible ways to generalize this to F-prob-

ability P (·) = [L(·), U(·)] with structure M

• “outer method”: substitute p(·) by L(·)
and U(·) (Choquet integral, fuzzy integral)

In general:

IELX :=
∫ ∞
0

L({ω | X(ω) > t}) dt .

For X ∈ N:

IELX :=
∑

x∈IN

L(X(ω) ≥ x)

• “inner method”: refers to the structure;

considers infp(·)∈M and supp(·)∈M (here in

what follows, closely related to Walley’s

natural extension)



Def. (Integrability, interval-valued expec-

tation)

* Random variable X

* M-integrable: p-integrable for all p(·) ∈
M.

IEMX :=
[
LIEMX, UIEMX

]

:=
[

inf
p(·)∈M

IEpX , sup
p(·)∈M

IEpX
]

⊆ [−∞,∞]

Theorem (e.g, Denneberg (1994, Kluwer,

Prop. 10.3)):

In the case of two-monotone probability both

definitions coincide.

Therefore: In the case of two-monotonicity ev-

erything said here is also valid for the Choquet

integral. Often Choquet-type form easier to

calculate.



1.2.4 A Closer Look at the Struc-
ture

Prop. (Properties of the structure)

• M is convex.

• In the case of a finite sample space: M is

a convex polyhedron.

* M is closed.

* The set E(M) of the extreme points

(vertices) is non-empty, finite, and it

uniquely determines M.

* |E(M)| ≤ k! for k := |Ω|.

Treatment of typical problems of interval prob-

ability with linear programming: Weichselberger

(1996); see also later today.



Calculation of E(M):

• Algorithm from the theory of convex poly-

hedra. (Intersection of k hyperplains)

• For two-monotone and totally monotone

probability closed form available:

E(M) = {pς(·) | ς ∈ Υ}
with

pς(Ei) = L




i⋃

j=1

Eς(j)


− L




i−1⋃

j=1

Eς(j)


 ,

for all i = 1, . . . , k and Υ as the set of all

permutations of {1, . . . , k}. Via Möbius in-

version: also explicite formula using the ba-

sic probability assignments available.



Vertice Reduction Lemma (VRL): Extreme

Points of the Structure and Calculation of Interval-

Valued Expectation F = (Ω;A;L(·)) on finite

Ω with structure M and extreme points E(M).

Then

•
LIEMX =

[
min

p(·)∈E(M)
IEpX ; max

p(·)∈E(M)
IEpX

]
.

• For every real g

LIEMX ≥ g ⇐⇒ IEpX ≥ g, ∀p(·) ∈ E(M)

• For infinite spaces: Vertex reduction possi-

ble for continuous F-probability (Augustin,

2004c, Manuscript)



1.2.5 Prestructure; Parametric Mod-
els and Independence

Prestructures:

• Let a set V of classical probabilities be

given.

• Construct the (unique) narrowest F-probability

field FV = (Ω,A, LV(·)), whose structure

MV contains V:

LV(A) := inf
p(·)∈V

p(A) ∧ UV(A) := sup
p(·)∈V

p(A)

• Then V is called prestructure of FV and

of MV. LV(·) is then the lower envelope

of V.



• Important applications

* Independent product of F-prob. fields

(strong independence):

Fi, i ∈ I ⊆ IN F-probability fields with

structure Mi. Then the independent

product ⊗
i∈I Fi

is defined as that F-probability field, which

has

×i∈IMi

as a prestructure.

* Parametric way to construct F-probability:

Take a set of parametric classical prob-

abilities as a prestructure

E.g. F-normal-distribution with param-

eter [µ, µ].

* Robustification of the classical concepts.



2. Robust Testing / Neighborhood
Models

2.1 Testing Statistical Hypotheses

• Basic Situation: Comparison of the means
µA, µB of a certain variable X in two sam-
ples A and B

• Typical examples

a) net income
b) aggressive behavior
c) duration of unemployment
d) decrease of blood pressure

X A B

a) male female
b) upper class lower class
c) special training none
d) standard treatment new hypotensive

treatment treatment



• Distinguish between the two hypotheses

H0 : µA ≥ µB H1 : µA < µB

by means of two samples X1, . . . , Xn taken

from group A and Y1, . . . , Yn taken from

group B

• Here assume X1, . . . , Xn ∼ N(µA, σ2
A); Y1, . . . , Yn ∼

N(µB, σ2
B)

• Basic procedure: needs

* a summary measure T from the samples

which is sensitive whether H0 or H1 is true

* a ’critical region’ C such that f the con-

crete observation of T falls into C then the

decision is in favor of H1



• choose C such that it satisfies two conflict-

ing aims

a) probability of observing C is very small,

when H0 is true (small probability of the

error of first kind)

b) probability of observing C is as high as

possible when H1 is true (small proba-

bility of the error of second kind)

• Neyman Pearson theory:

asymmetric: firstly satisfy a) by stating a

small upper bound α (level of significance),

then, among all procedures respecting this

bound, take b) into account



The Neyman-Pearson Problem

H0 : {P0(·) } H1 : {P1(·) }

u u

@
@

@R

¡
¡

¡ª
? ?

data E

?

optimal decision for H0 or for H1

6

errorfirst kind - second kind¾

”H1”, but H0 is true ”H0”, but H1 is true

Control the prob. !

6 6

Minimize the prob. !

General construction principle: N.P. Lemma !

@
@

@
@@I

¡
¡

¡
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• Neyman Pearson’s (fundamental) lemma for

simple hypothesis:

H0 : p(·) = p0(·) H1 : p(·) = p1(·)
General construction principle: optimal crit-

ical region C̃ can be obtained from the like-

lihood ratio π(·) between p1 and p0

C̃ :=

{
ω|π(ω)=

p1(ω)

p0(ω)
> τ

}

where τ is such that

p0(C̃) ≤ α .

• From that also optimal T and C for the

situation above can be derived.



2.2 Robust Statistics and Neighbor-
hood Models

• General problem: Many standard proce-

dures (typically based on normal distribu-

tions) may show disastrous behavior even

under small deviations from the true model.

In particular high sensitivity to single out-

lying observations.

• Idea: Protect yourself by an insurance con-

tract:

* cost of premium: some small loss in ef-

ficiency if the model is completely cor-

rect,

* but in the case of an ’accident’ (=model

is wrong): still acceptable behavior of

the procedures



• Look at the sample mean X̄

a) If X1, . . . , Xn ∼ N(µ,1) (normal distri-

bution), then

X ∼ N(µ,
1

n
)

We can learn the true mean µ from a

sample; the larger the sample, the higher

the precision of the estimator X̄.

b) If X1, . . . , Xn ∼ C(µ,1) (Cauchy distri-

bution), then

X ∼ N(µ,1)

Interpretation: impossibility to learn. Even

millions of observations do not yield any

gain in precision of the estimation based

on the sample mean.



Two approaches

• continuity of functionals considered (Ham-

pel)

• work with neighborhood models (Huber,

Strassen)

* Imprecise/interval probability provides a

powerful superstructure upon these model

* huge area of potential applications, far

beyond testing



Neighborhood models (e.g. Huber (1981, Ro-

bust Statistics))

• Central idea: develop a theory of ’approxi-

mately true models’

• Instead of p0(·) only, consider the set of all

distributions ”close” to p0(·)

Uε(p) := {p(·) ∈ K|d(p0, p) ≤ ε}
ε-neighborhood of p0(·)

• Different models, depending on the norm

in which the distance d is measured

* total-variation norm

* Levy-Prokorov norm

* Kolmogorov norm

* Levy norm



• most common model: ε-contamination model

Huber (1965), Rieder (1977, 1978), Wal-
ley: linear-vacuous mixture

* unobserved heterogenity:

* (1 − ε) · 100% of the observations are
distributed according to p0(·)

* ε · 100%, however, come from any dis-
tribution

* sensitivity analysis application (Rieder).
How large can ε be chosen such that
the essential conclusions do not change
qualitatively?

• All these models lead to two-monotone prob-
abilities

• In the case of the ε-contamination model

L(A) = (1− ε) · p0(A), ∀A ∈ A
U(A) = (1− ε) · p0(A) + ε, ∀A ∈ A.



General form of neighborhood models

• Distorted probabilities (pseudo capacities,

special capacities)

L(A) = f(p0(A)), ∀A ∈ A.

With p0(·) classical probability (central dis-

tribution) and f distortion function:

f : [0,1] → [0,1]; f(1) = 1.

• If f convex, then L(·) is two-monotone.

• Quite general: f(x) ≤ x,∀x ∈ [0,1] yields

R-probability, i.e. non-empty structure.

• Wide class of F -probabilities:

f(·) bi-elastic: Wallner (2003, ISIPTA)

• Robust premium principles (Denneberg)



Generalized neighborhood models Augustin

(2002a, JStatPlanInf), Wallner (2003, ISIPTA)

• Neighborhood models for interval probabil-

ity

• Use F -probability field (Ω,A, L0(·)) as cen-

tral distribution

• L(A) = f(L0(A)), ∀A ∈ A



2.3 Huber Strassen Theory

The generalized Neyman Pearson problem

H0 : {P0(·) } H1 : {P1(·) }

u u
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optimal decision for H0 or for H1

6

errorfirst kind - second kind¾

”H1”, but H0 is true ”H0”, but H1 is true

Control the prob. !

6 6

Minimize the prob. !

General construction principles !?
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Neyman-Pearson testing between interval

prob.

• ‘sample size 1’. Situations with sample size

n are included by considering the indepen-

dent products.

• Decision via test(-functions) ϕ : Ω → [0,1]:

Only classical (and not interval-valued) prob-

abilities of rejecting hypotheses are allowed.

(Idea of randomization based on an ideal-

ized random-experiment without any non-

probabilistic uncertainty)



Optimality criteria

• Minimize the probability of the error of the
second kind IEM1

(1− ϕ)
while controlling for the error of the first
kind IEM0

ϕ

• Conservative view in testing: interval or-
dering by the upper bound of the errors
only

• ϕ∗ level-α-maximin-test (LAMT) (for F0

versus F1) , if

* ϕ∗(·) respects the given level of signifi-
cance α ∈ (0,1), i.e.

UIEM0
ϕ∗ ≤ α .

* ϕ∗(·) has maximal power among all tests
under consideration, i.e.

∀ψ∈Φ
[
UIEM0

ψ ≤ α ⇒ LIEM1
ψ ≤ LIEM1

ϕ∗
]
.



(Globally) least favorable pairs

Main paper: Huber & Strassen (1973)

Construction of LAMTs?

&%

'$

&%

'$

• Idea: ‘If one succeeds in convincing the

hardliner of two parties one has convinced

all their members’. Therefore,

• search for two elements q0(·) and q1(·) of

the structures, where the testing is most

difficult.



• A Globally least favorable pair (GLFP))
is a pair (q0(·), q1(·)) of classical probabili-
ties with the following properties:

* (q0(·), q1(·)) ∈M0 ×M1

* The critical region based on the likelihood-
ratio π(·) of q0(·) and q1(·) lies least fa-
vorable, i.e.

∀t ≥ 0, ∀p0 (·) ∈M0 :

p0 ({ω |π(ω) > t}) ≤ q0 ({ω |π(ω) > t})

∀t ≥ 0, ∀p1 (·) ∈M1 :

p1 ({ω |π(ω) > t}) ≥ q1 ({ω |π(ω) > t}) .

• In Huber-Strassen theory: ‘least favorable
pair’

• Note: the reduction to the classical proba-
bilities q0(·) and q1(·) does not mean that
the ambiguity is cancelled out!
The interval probability field Fi is only rep-
resented in this concrete testing problem
by qi(·).



Properties of globally least favorable pairs

• Globally least favorable pairs indeed lead to

level-α-maximin-tests

• Globally least favorable pairs do not de-

pend on the sample size (→ very conve-

nient for calculation)

• Huber-Strassen theorem (Huber, Strassen

(1973), Buja (1986))

If F0 and F1 are two-monotone probability

fields with

(An)n∈IN ↑ A, An open, n ∈ IN =⇒
lim

n→∞L(An) = L(A) ,

then there exists a globally least favorable

pair for F0 versus F1.

• construction algorithms mainly for neigh-

borhood models (e.g. Rieder (1977), Öster-

reicher (1978), Bednarski (1981), Hafner

(1992))

• ‘necessity theorem’



Necessity theorem Let F0 be an F-probability

field with structure M0. If there exists for any

K-probability p1(·) with p1(·) 6∈ M0 a K-prob-

ability p0(·) ∈ M0 such that (p0(·), p1(·)) is a

globally least favorable pair for F0 versus F1 :=

(Ω,A, p1(·)), then F0 must be a two-monotone

probability field.



2.5 Extension to General Interval
Probability

• nevertheless generalization to general in-

terval probability possible (Augustin (1998,

1999a,b, 2002a oder b?***))

• Existence of GLFP in particular in the case

of

* generalizations of parametric distribu-

tions with monotone density ratio to in-

terval prob. (e.g. F-normal distribu-

tion)

* generalized neighborhood models (neigh-

borhood models of interval probabilities)

• generalization of construction algorithms

by looking at least favorable pairs of in-

terval probabilities
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Idea:

Least favorable pseudo-capacity

=

(Usual) pseudo-capacity around the GLFP

for the central distributions ?

Sufficient conditions available.



• locally least favorable pairs (least favor-
able position only for a certain value of the
level of significance α (adopting Baumann
(1968), Plachky & Rüschendorf (1984), see
Augustin (1998, 1999b)).

* (q0(·), q1(·)) ∈M0 ×M1,

* and there exists a best test ϕ∗(·) for
{q0(·)} versus {q1(·)} with UIEM0

ϕ∗ ≤ α

and IEq1ϕ
∗ = LIEM1

ϕ∗.

• Also sufficient to obtain LAMTS

• Sufficient for the existence: F-probability
fields with

(An)n∈IN ↑ A, n ∈ IN =⇒

lim
n→∞Li(An) = Li(A) , i ∈ {0,1} .

• On finite spaces: Reformulation as a linear
optimization problem

• There dualization yields a generalization of
the Neyman Pearson Lemma.



3. Decision Making

3.1 Basic Concepts, No-data Prob-
lem

Actions
a) Walk different types
to the mountain to dress
b) Investment problem Investment

No Investment
c) medical checkup different treatment



Actions States of Nature
a) different types to dress hot / warm / rain / snow
b) Investment economic situation

No Investment (upswing, neutral,
downswing)

c) different different diseases
treatments no disease



Classical Decision Theory

no-data problem (on finite spaces)

• set IA = {a1, . . . , as, . . . , an} of actions,

• set Θ = {ϑ1, . . . , ϑj, . . . , ϑm} of states of

nature

• precise loss function (or utility)

l : (IA×Θ) → IR
(a, ϑ) 7→ l(a, ϑ) ,

• represented in an loss table
ϑ1 ϑj ϑm

a1 l(a1, ϑ1) . . . l(a1, ϑj) . . . l(a1, ϑm)
... ... ...

as l(as, ϑ1) . . . l(as, ϑj) . . . l(as, ϑm)
... ... ...

an l(an, ϑ1) . . . l(an, ϑj) . . . l(an, ϑm)

• associated random variable l(a) on (Θ,Po(Θ))

• Aim: Choose an optimal action a∗!



randomized actions

Often more general approach: extension of IA

by considering randomized action

ã = (λ(a1), . . . , λ(as), . . . , λ(an))

• with λ(as) as the classical probability to

choose action as

(s = 1, . . . , n;
∑n

s=1 λ(as) = 1, λ(as) ≥ 0 )

• Λ(IA) set of all randomized actions from IA

• Such mixed actions need not be senseless

(e.g. mixture of investment strategies).

• Simplifies formal treatment.

• Utility of a randomized action ã at state θj:

u(ã; θj) =
n∑

s=1

(
u(as; θj) · λ(as)

)



Optimality criteria

1) Minimax optimality

• Wald: decision problems as gambles against

nature; zero-sum game; concentrate on the

worst states

• In the no-data problem: max
ϑ∈Θ

l(a, ϑ) → min

2) Bayes optimality with respect to prior π(·)
on (Θ,Po(Θ)). Maximize expected utility

[P1 ] Every uncertainty can adequately be de-

scribed by a classical probability distribu-

tion ⇒ prior distribution π(·) for a param-

eter

• In the no-data problem: IEπ(l(a, ϑ)) → min



ideal ran-
domness

¾ uncertainty

?

- ambiguity

? ?

subjective class. prob. zero-sum gamble

? ?

subj. expected utility maximin solution

? ?

Ellsberg overpessi mistic

generalized probability– –

generalized expected utility

?



Ellsberg’s Experiments

• Ellsberg (1961, Quart. J. Econ.)

• Ellsberg (2001, Series of most influential

Harvard theses)

• Does the difference between an ideal lot-

tery situation and the general decision sit-

uation under uncertainty matter?

• Urn with balls of three different colours:

one with known proportion, two with par-

tially unknown proportions

• participants express preferences which can

not be modelled by any classical probability

measure

• deliberate (not only empirical!) violations

of the axioms of (classical) probability!

• Conclusion: (Classical) probability is insuf-

ficient to adequately model ambiguous un-

certainty.



Ambiguity

• Ellsberg (1961, Quart. J. Econ.)
Ellsberg (2001, Series of most influential
Harvard theses)

• in psychology, management science and eco-
nomics

* bibliography: Smithson (1999, tech. re-
port)

* collection of important papers: Hamouda
& Rowley (1997, Edward Elgar)

* in principle even in Knight (1921) &
Keynes (1921)

• in statistics

* Walley (1991, Chap. & Hall, Ch. 5)

* Weichselberger (2001, Physica, Ch. 1, 2.6)

* ISIPTA Proceedings (1999, 2001, 2003)

* Special volumes Statistical Papers (2002),
J.Stat.Plan.Inf. (2002)

• in artificial intelligence

* Uncertainty in Artificial Intelligence Pro-
ceedings (Annual)



3.2 Generalized Expected Utility/Loss

• Def.: Generalized expected loss

* basic decision problem (IA,Θ, l(·))

* F-probability Π(·) on (Θ,Po(Θ)) with

structure M.

Then, for every pure action a ∈ IA and for

every randomized action a ∈ Λ(IA), resp.,

IEMl(a)

is the generalized expected loss (with re-

spect to the prior Π(·)).

• Notice: IEMl(a) is an interval-valued quan-

tity. If a linear ordering is desired −→ rep-

resentation



Interval ordering

When is [LIEMX ; UIEMX] ¹ [LIEMY ; UIEMY ] ?

• partial ordering, e.g. IEMX ¹ IEMY iff

* UIEMX ≤ LIEMY or

* LIEMX ≤ LIEMY ∧ UIEMX ≤ UIEMY

• linear (complete) ordering by real-valued
representations (here: pignistic view)

* in general IEMX ¹ IEMY iff

f(LIEMX; UIEMX) ≤ f(LIEMY ; UIEMY )

for an appropriate function f(·)
* usual representation: f(IEMX) := UIEMX

(upper bound, Γ-Minimax principle, Max-
E-Min principle, (e.g. Berger (1990),
Kofler (1989))

* Ellsberg (1961), Jaffray (1989), Weich-
selberger & A. (1998), Weichselberger
(2000, Chapter 2.6) linear representa-
tion with caution η

f(LIEMX; UIEMX) = η·LIEMX+(1−η)·UIEMX .



• easiest choice: IEMl(a) 7→ UIEMl(a)

* a∗ is optimal iff

UIEMl(a∗) ≤ UIEMl(a) , ∀a ∈ Λ(IA) .

* strict ambiguity aversion
* Gamma-Minimax criterion (e.g., Berger

(1984, Springer, Section 4.7.6), Vidakovic

(2000, in Rios-Insua & Ruggeri (eds.)),
* Maxmin expected utility model (Gilboa

& Schmeidler (1989, J. Math. Econ.))
* MaxEMin criterion (Kofler & Menges

(1976, SpringerLN Econ); Kofler (1989,

Campus))
* For two-monotone capacities: Choquet

expected utility (e.g., Chateauneuf, Co-

hen & Meilijson (1997, Finance))



!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

The two classical decision criteria are contained

as border cases:

* perfect probabilistic information, no ambi-

guity: M = {π(·)} −→ Bayes optimality

with respect to π(·).

* Completely lacking information, Π(B) =

[0; 1], for every B ∈ Po(Ω) \ {∅,Θ}, (‘non-

selective or vacuous prior’); leads to the

maximin criterion



Calculating the optimal randomized action

(Augustin, 2002b, Stat. Pap.)

UIEMl(ã) → min
a∈Λ(IA)

,

⇐⇒ max
π(·)∈M

m∑

j=1

(
l(ã;ϑj) · π({ϑj})

)
→ min

a∈Λ(IA)

⇐⇒ max
π(·)∈M

m∑

j=1




n∑

s=1

(
l(as; θj)λ(as)

)
· π({ϑj})


 → min

λ(·)

subject to the constraints

n∑

s=1

λ(as) = 1

λ(as) ≥ 0, s = 1, . . . , n .



This problem can be transformed to become a

linear problem.

Auxiliary variable g for UIE(ã) leading to the

problem:

g → min
λ(·)

subject to the constraints

m∑

j=1




n∑

s=1

(
l(as, ϑj) · λ(as)

)
· π({ϑj})


 ≤ g,

∀π(·) ∈M.

λ(as) ≥ 0 ,

s = 1, . . . , n ,
n∑

s=1

λ(as) = 1 .

This problem is linear in the variables, but un-

countably many constraints!



But remember the vertex reduction lemma:

m∑

j=1




n∑

s=1

(
l(as, ϑj) · λ(as)

)
· π({ϑj})


 ≤ g,

∀π(·) ∈M.

V RL⇐⇒
m∑

j=1




n∑

s=1

(
l(as, ϑj) · λ(as)

)
· π({ϑj})


 ≤ g,

∀π(·) ∈ E(M) .



• Transformed into a single linear program-

ming problem

• Easy proof of existence of solutions and of

the convexity of the set of solutions

• Easy proof of existence and calculation of

a least favorable prior (slack to g equals 0)

• further insights by dualization?

* theoretical issues (← generalized Ney-

man Pearson Lemma for testing with in-

terval probability (Augustin (1998, Chap-

ter 5))

* computational issues (Utkin): calcula-

tion of all vertices may be circumvented



Now, for the next few slides, change to a utility
table:

Corollary Consider a basic decision problem
(IA,Θ, u(·)), and an F-probability Π(·) = [L(·), U(·)]
on (Θ,Po(Θ)) with structure M where L(·) is
a two-monotone capacity. Let Υ be the set of
all permutations of {1, . . . , m}.

a) The following three statements are equiv-
alent:

i) λ∗(·) is maximizing generalized expected
utility with respect to the prior Π(·).

ii) λ∗(·) is maximizing Choquet expected
utility with respect to L(·), i.e., IELu(λ∗) ≥
IELu(λ), for all λ ∈ Λ(IA).

iii) λ∗(·) corresponds to an optimal solution
(λ∗({a1}), . . . , λ∗({an}, g∗) of the linear
programming problem

g → max



subject to the constraints λ(as) ≥ 0 , s =

1, . . . , n ,
∑n

s=1 λ(as) = 1 and

m∑

j=1

n∑

s=1

u(as, ϑj) · λ(as) ·

(
L

( j⋃

l=1

{ϑς(l)}
)
− L

(j−1⋃

l=1

{ϑς(l)}
))

≥ g , ∀ς ∈ Υ .

b) If µ(·) is the Moebius inverse of L(·), then

the relation above can be written as
m∑

j=1

n∑

s=1

u(as, ϑj)·λ(as)·
∑

A⊆∪j−1
l=1ϑς(l)

µ(A∪ϑς(j)) ≥ g , ∀ς ∈ Υ .



Other interval orderings: linear combinations

Ellsberg (1963), Jaffray (1989), Weichselberger

& A. (1998), Weichselberger (2000, Chapter

2.6): linear representation

Define

IEM u(a∗, θ) º IEM u(a, θ) ,

iff

η · LIEMu(a∗, θ) + (1− η) · UIEMu(a∗, θ) ≥
η · LIEMu(a, θ) + (1− η) · UIEMu(a, θ)

a∗ optimal action with respect to imprecise

prior Π(·) and caution η.



After introducing again randomized actions λ(as)

one has to consider the maximization of

η · LIEM(ã) + (1− η) · UIEM(ã)

⇐⇒ η ·

 min

π(·)∈M

m∑

j=1

(
u(ã;ϑj) · π({ϑj})

)

 +

+(1− η) ·

 max

π(·)∈M

m∑

j=1

(
u(ã;ϑj) · π({ϑj})

)



⇐⇒ η ·

 min

π(·)∈M

m∑

j=1




n∑

s=1

(
u(as; θj)λ(as)

)
· π({ϑj})





 +

+(1− η) ·

 max

π(·)∈M

m∑

j=1




n∑

s=1

(
u(as; θj)λ(as)

)
· π({ϑj})







subject to the constraints

n∑

s=1

λ(as) = 1

λ(as) ≥ 0, s = 1, . . . , n .



Try to make this problem linear:

• auxiliary variable h for UIEu(ã):

m∑

j=1




n∑

s=1

(
u(as, ϑj) · λ(as)

)
π({ϑj})


 = h

subject to the constraint

π(·) ∈M ,

with π(·) ∈M which is equivalent to

L


 ⋃

j∈J
{ϑj}


 ≤

∑

j∈J
π({ϑj}) ≤ U


 ⋃

j∈J
{ϑj}


 .

∀J ⊆ {1, . . . , m}

• auxiliary variable g for LIEu(ã):

m∑

j=1




n∑

s=1

(
u(as, ϑj) · λ(as)

)
π({ϑj})


 ≥ g,

∀π(·) ∈M resp. ∀π(·) ∈ E(M) .



η · g + (1− η) · h → max
λ(·)∈Λ(IA)

subject to the constraints


m∑

j=1




n∑

s=1

(
u(as, ϑj) · λ(as)

)

 π({ϑj})


 ≥ g ,

∀π(·) ∈ E(M)




m∑

j=1




n∑

s=1

(
u(as, ϑj) · λ(as)

)

 π̄({ϑj})


 = h

U


 ⋃

j∈J
{ϑj}


 ≥

∑

j∈J
π̄({ϑj}) ≥L


⋃

j∈J
{ϑj}


 ,

∀J ⊆ {1, . . . , m} ,

n∑

s=1

λ(as) = 1, λ(as) ≥ 0, s = 1, . . . , n ,

• This problem is linear only for η = 1. For

η < 1 bilinear optimization problem

• Many results still hold.

• Software available, or split the problem

into several linear problems.

• Also neat results available by appropriate

dualization theory????



3.3 Utilizing Additional Information
(Data)

Actions States of Nature
a) different types hot / warm /

to dress rain / snow
b) Investment economic situation

No Investment (upswing, neutral,
downswing)

c) different treatment different diseases
no disease

Additional Inform
a) looking at the

barometer
b) Expert judgement
c) X-ray



Data problem

• Incorporate additional information from a

sample !

• Choose an optimal strategy !

• What is the value of a certain information ?

Information on ϑj from an experiment where

the probability depends on ϑj:

For every j a classical probability pj(·) is given

x1 . . . xi . . . xk

ϑ1 p1({x1}) . . . p1({xi}) . . . p1({xk})
... ... ... ...
ϑj pj({x1}) . . . pj({xi}) . . . pj({xk})
... ... ... ...
ϑm pm({x1}) . . . pm({xi}) . . . pm({xk})

Often pj({xi}) is interpreted as p({xj}|{ϑj}).



decision functions (strategies)

• describing randomized action in dependence
on the observation {xi}

d : {x1, . . . , xk} → Λ(IA)
xi 7→ d(xi) = a .

• randomized decision functions d(xi, as); clas-
sical probability to choose as if {xi} occurs.

• D set of all decision functions

• associated random variable l(d, ϑj) on (Ω,A)

• risk of d(·)
R(d, ϑj) := IEpj

(
l(d, ϑj)

)
.

• New decision problem (D,Θ, R(·, ·)).

The value of the information experiment

loss of the optimal action
in the no-data problem

—
risk of the optimal decision function

in the data problem
=

value of information

Always nonnegative.



Optimality criteria

1) Minimax optimality

• In the no-data problem: max
ϑ∈Θ

l(a, ϑ) → min

• In the data problem: max
ϑ∈Θ

R(d, ϑ) → min

2) Bayes optimality with respect to prior π(·)
on (Θ,Po(Θ)).

• In the no-data problem: IEπ(l(a, ϑ)) → min
• In the data problem: IEπ(R(d, ϑ)) → min

“Main theorem of Bayesian decision analysis”

• Optimal d∗(·) can be obtained by solving,
for every observation {x}, the no-data prob-
lem with the posterior π(·|x) as the ‘up-
dated prior’.

optimality with respect to prior risk
=

optimality with respect to posterior loss
• For maximin solutions NO reduction of the

data problem to no-data problems possible.



• Two paradigms underlying the classical Bayesian

view

[P1 ] Every uncertainty can adequately be

described by a single classical probability

distribution ⇒ prior distribution π(·) for

a parameter

[P2 ] After having observed the sample {x},
the posterior π(·|x) contains all the rel-

evant information. Every inference pro-

cedure depends on π(·|x), and only on

π(·|x).



Data problem under interval probability:

• Now, for every j, an F-probability field

Pj(·) = [Lj(·), Uj(·)]
with structure Mj is given.

• risk of the decision function d(·)

* Given ϑj : IEMj

(
l(d, ϑj)

)
represented by

R(d) := UIEMj

(
l(d, ϑj)

)

* with prior structure M look at

IEM (R(d))

represented by

UIEM (R(d))

The value of the information experiment

loss of the optimal action
in the no-data problem

—
risk of the optimal decision function

in the data problem
=

value of information

Still always nonnegative.



3.4 Robust Bayesian Procedures
Inference by the Generalized Bayes
Rule

• classical statistics:

data problem with prior π(·)
≡

no-data problem with updated prior π(·|x)
⇒ posterior contains full information

• Generalization: Robust Bayesian Inference

(Survey: Wasserman (1997, Enc. Stat. Sc.,

Update 1))
prior structure M

+ observation x
posteriori structures M|x

with
M|x = {π(·|x)|π(·) ∈M}

and Π(·|x) = [π(·|x), π(·|x)] derived from it.



• Used in Kofler & Menges’ (1976) theory of

partial information

• Strong justification by coherence axioms

(Walley (1991): Generalized Bayes Rule)

• algorithms by Cozman (1999, J. Comp.

Graph. Stat.; 2000, Int. J. Approx. Reas.)

• intuitively very plausible

• elegant modelling of prior-data conflict (Wal-

ley (1991, Ch. 1))

• successive updating: use Π(·|x) as a new

prior in handling new observations



BUT

• Decision theoretic justification is lost.

• Decision functions constructed via the pos-

terior structure may have higher risk.

• optimality with respect to imprecise prior risk

6=
optimality with respect to imprecise posterior loss

• ?
=⇒ The imprecise posterior does not con-

tain all the relevant information !?!?

WHY?



Decision functions constructed via the pos-
terior structure may have higher risk

• Vacuous prior(“Π(·) = [0,1]”)

* Minimax decision function d∗(·) minimizes
prior risk.

* Vacuous posterior for every observation
(we do not learn from the data!); min-
imax action a∗ minimizes posterior loss
for every observation

* Usually d∗ > (a∗, . . . , a∗)

• Non-degenerated counterexample: toy ex-
ample below

• Representation theorem: Optimal decision
functions with respect to an imprecise prior
π(·) are always minimax solutions (in a dif-
ferent decision problem)

• Imprecise posteriors may be dilated (Sei-
denfeld & Wasserman (1993, Ann. Statist.);
Wasserman & Seidenfeld (1994, J. Stat.
Plann. Inf.))
[π(·|x), π(·|x)] ⊃ [π(·), π(·)] , ∀x
Often to a negative value of information.



Representation Theorem: Optimal decision

functions with respect to an imprecise prior

π(·) are always minimax solutions (in a differ-

ent decision problem): Consider

• a basic decision problem (IA,Θ, l(·, ·)) with

• prior structure M and

• (precise) sampling information (pϑ(·))ϑ∈Θ

i) An action a∗ is optimal optimal with re-

spect to the prior structure M
iff

it is maximin action in the decision problem

(IA,M, l̃(·, ·)) with

l̃ : (IA×M) → IR
(a, π) 7→ l̃(a, π) := IEπ(l(a, ϑ)



ii) A decision function d∗(·) is optimal

iff

d∗(·) is maximin decision function in the de-

cision problem (D,M, R̃(·, ·)) with

R̃ : (D ×M) → IR
(d, π) 7→ R̃(d, π) := IEπ(R(d, ϑ)) .

Proof: max
π(·) ∈M︸ ︷︷ ︸

↑

IEπ(l(a, ϑ))︸ ︷︷ ︸
↑

new states l̃(a, π)
of nature



Remarks

• Optimal decision functions have all the
((un)pleasant) properties of minimax so-
lutions.

• Neither

* equivalence of posterior loss and prior
risk

nor

* essentially completeness of unrandom-
ized actions (also for robust Bayesian
solutions!)

can be expected.

• Representation similar to Schneeweiß’s (1964)
representation of a no-data problem.

• Extensions to interval-valued sampling model
and Hurwicz-like criterion.

• Framework for decision making with sec-
ond order probabilities.



3.5 Calculating Decision Functions
Minimizing Prior Risk

• Vidakovic (2000, in Rios-Insua & Ruggeri

(eds.))

• Noubiap & Seidel (2001, Comp. Stat. &

Data Anal.), (2001, Ann. Stat)

• On finite parameter spaces solution via a

single linear programming problem avail-

able (Augustin (2001, ISIPTA01), (2004a,

ZAMM))

Consider finite sample spaces. Minimize

UIEM
(
UIEMj

(l(d, ϑj))
)
= max

π∈M




m∑

j=1

max
pj(·)∈Mj


k∑

i=1




n∑

s=1

l(as; ϑj)︸ ︷︷ ︸
given

· d(xi; as)︸ ︷︷ ︸
unknown


 · pj({xi})︸ ︷︷ ︸

∈Mj

constr.


 · π({ϑj})︸ ︷︷ ︸

∈M
constr.




w.r.t.
∑n

j=1 d(xi, as) = 1 , d(xi, as) ≥ 0 ∀i, s.



• Make this problem linear: auxiliary vari-

ables g for UIEM, as well as gj for UIEMj
.

• Use the vertice reduction lemma to refor-

mulate the task as a linear optimization

problem:

g −→ min

subject to the constraints

k∑

i=1




n∑

s=1

l(as, ϑj) · d(xi, as)


 · pj({xi}) ≤ gj

∀pj(·) ∈ E(Mj); ∀j ∈ {1, . . . , m}
m∑

j=1

gj · π({ϑj}) ≤ g

∀π(·) ∈ E(M)
n∑

j=1

d(xi, as) = 1 , d(xi, as) ≥ 0 ∀i, s .



• Single linear programming problem

• Easy proof of existence of solutions and of

the convexity of the set of optimal decision

functions

• further insights by dualization!

• also for Choquet Expected Utility in case

of two-monotone capacities or belief func-

tions

• optimal unrandomized actions by integer

programming (Boolean optimization) (but

not essentially complete)



Further Work in That Direction

• Extension to infinite sample spaces using
results by Rüger, Utkin

• Apply dualization:

* → least favorable constellations
* for hypothesis testing:

Generalization of the Generalized Neyman-
Pearson Lemma (Augustin (1998, Van-
denh. & R., Ch. 5 ))

• Use more sophisticated interval ordering to
model general ambiguity attitudes (cf. above
for the no-data problem)

• sequential decision making, but be careful!

* backward induction: Hermanec (2002,
J. Stat. Plan. Inf.)

* ’sophisticated versus step by step opti-
mal’: Jaffray (1999, ISIPTA99)

* for sequential testing: Augustin & Pöhlmann
(2004, J. Stat. Plan. Inf., in Revision.)

* Teddy’s talk



3.6 Concluding Remarks

How to live with the observed discrepancy bet-
ween posterior loss optimality and prior risk
optimality?

• Fundamental questions still debatable
(Augustin (2003, ISIPTA03)):
* What is updating?
* How to learn from data? (inference)
* How to make optimal decisions?

* Does [π(·|x), π(·|x)] really deserve to be
called posterior, since it
- does not contain the full information

from a sample and
- leads to suboptimal decision functions ?

* Implicit definition of posterior ??

or
* Separate updating/inference and deci-

sion in an uncompromising way !
* But check for potential paradoxes (sta-

tistical estimating and testing problem
can be formulated as inference as well
as decision problems.)

• Old debate between Bayesians and frequen-
tists is back with higher importance than
ever; now the standpoint matters.


